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Field theoretic derivation of the contact value theorem in planar geometries and its modification
by the Casimir effect
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The contact value theorem for Coulomb gases in planar or filmlike geometries is derived using a Hamil-
tonian field theoretic representation of the system. The case where the film is enclosed by a material of
different dielectric constant to that of the film is shown to contain an additional Casimir-like term which is
generated by fluctuations of the electric potential about its mean-field value.
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I. INTRODUCTION B

Z=Trf d[¢]exp( - —f dxe(x)(V ¢(x))?
o . . 2Jy

Coulomb gases arise in a huge variety of physical con-

texts from plasmas to soft condensed matter sysfdnid.
Ideal Coulomb gases, where only pointlike charges are con- +i,8f dxpe(X) P(X)
sidered, present a number of useful sum ri&g]. These v

sum rules are exact identities between certain statistical me-

chanical observables. Sum rules are useful for checking th‘é’here T denh(l)tes the classical trace over the partlcl_e PosI-
validity of approximation schemes, which must almost al-1°"S IN![HIT= 1 dx; andd[ ¢] denotes the functional inte-
ways be applied in the case of strongly interacting systemdlr@! over the field$. The field ¢ is the Wick rotated elec-
They also provide potentially useful experimental and nu-rostatic f'eld‘ﬁ and is thus related tg via ¢=—i¢. The
merical methods of indirectly measuring local observables if€M pe(X) =2i=10i 6(x—x;) + pq(X) is the charge density of
terms of macroscopically measurable quantities such as tH8€ System. The first term is the dynamical charge density
pressure and vice versa. Finally sum rules may also be usedhich can vary in the systenx; being the position of par-

to verify the accuracy of numerical simulations where,ticle i, andg; its charge. The second terpy is a quenched

thanks to the sum rule, the same quantity can be measured fckground charge which is not dynamical and represents,
two independent ways. for example, a fixed surface charge. The integration volume

An examp|e of such a sum rule is the contact value theoi.n the actionV is all space. We note that the above treatment
rem which relates the surface charge and density at the suff @ two component Coulomb gas needs to be modified
face of the system to the system’s pressiBgl]. In this ~ Where the basic physical description of point charges inter-
paper we use a field theoretic approach to show how thacting via a Coulomb potential is thermodynamically un-
basic contact value theorem can be derived in the case &fable. For instance the system can become unstable and
layered geometries, such as soap films, and show how tHeave a tendency to collapse at low temperatures if some short
contact value theorem is modified when the dielectric confange, for example hard core, repulsion is not included. The
stante within the film is different from that outside the film Sine-Gordon theory can always be regularized by introduc-
€o. The film geometry is of particular importance as it cor-ing @ high momentum or short distance cutoff in the Fo_uner
responds to the experimental set up used to study soap filnfgodes of the field). We note that the above formulation
[5]. We exploit the planar geometry to develop a Hamil-contains self interactions between the partidles, the terms
tonian formulation of the Sine-Gordon field theory which didju(ri—r;)/2 for i=j wherev is the effective pairwise
arises for Coulomb gasé€]. In this formulation the perpen- interaction are included. The interaction of a particle with its
dicular direction, denoted here layacts as a temporal coor- image charges is part of this contribution and should be in-
dinate in which a fieldp(r) on the plane perpendicular m cludgd, but the self—e_nergy in the bulk medium should not
and whose coordinates are denoted by the vettqropa- contribute to the physical pressure and so must be subtracted.
gates. The case where global electroneutrality holds i§0r @ monovalent system in dimensidnif one removes the
treated within this formulation. The condition of electroneu-bulk self-energy term, the Sine-Gordon free energy is cor-
trality can be related to the choice of ground-state wave functected by a term
tional for the dynamical fieldp(r).

, ()

: " - e%v(0) Ne? Sy [A -
In the canonical ensemble, the partition function for a AF=— __ f dkKkd—3 )
. . . . ] 1
system of fixed particle number on a three-dimenaional 2 2e (2m)")o

spaceV is given by[6]
whereN is the number of particle§y denotes the surface of
the unit sphere ird dimensions and\ is an ultraviolet or
*Email address: dean@irsamc.ups-tlse.fr short distance cutoff. Note that fa>2 AF is a regular
TEmil address: rrh@damtp.cam.ac.uk function of A and so can be absorbed into the fugacity. How-
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ever, ford=2 the integral in Eq(2) has an infrared diver- could be the dielectric constant of air ardthe dielectric
gence ak=0, which must be cut off at the inverse system constant of water. We may also consider systems where the
size 1L giving regionsze[—46,0] andze[L,L+ 8] have a dielectric con-
stant determined by the dielectric constant of a surfactant and
its concentration at the surface.

In the grand canonical ensemble, the grand partition func-
tion is written as
Thus, in two dimensions there is a correction to the sine-

B Ne?
AF=—2—[In(A)~In(1L)]. 3)

Gordon pressure of Ezj d[dlexp — S &,L]). (5)
p€’
AP=- e (4 The film the pressure is therefore given by
. , 19In(E)
where 2»=N/L< is twice the density of electrolyte. BP=— (6)

Normally the particles are restricted to a subvolumé A oL

for_ instance in the interior .Of a soap film for eIe_ctronFe 597 In the case considered he®js the action of a generalized
lutions. In the case whereis constant, the functional inte- o~ "0 e g theorj]

gral over ¢ is easily done and we recover a systemNof

particles interacting via the Coulomb potential. For a varying B

dielectric constant the resulting interaction depends on the S ¢,L]= Ef dxe(Z)(V¢)2—2f dxu(z)cogeBd(x))
spatial variation ofe and the resulting integration gives rise v v

to a more complicated interaction which can be interpreted in

terms of image charges. The partition functidrin Eq. (1) —iﬁf dr0¢(X)+iﬁf drog(x), )
thus contains a term which is due to the pairwise inter- z=0 z=L

particle interaction, plus a functional determinant coming
from the integration over. Both of these terms are present
in the physics of the problem and should be taken into ac

count. The form of Eq(1) comes dlrect_ly from a static ap- face charge contributions from the transverse planes of area
proximation to quantum electrodynami¢@@ED) where the Aatz=0 andz=L

e o 1" We now et the action using he. cecomposiin
mag nelare neglectec in terms of the fieldg¢(r), which evolves with a temporal
of QED [6—8]. This approximation is justified when the coordinatez

charge distribution is very weakly coupled to nonzero Mat-

subara frequencid9], that is to say the response time of the

charge to the nonzero frequencies is large. The nonzero Mat- B= f 2 qb]ex;{ — f dZS[d),Z]), (8)
subara frequencies, when decoupled from the charge distri-

bution, yield a van der Waals interaction between the Suryhere the path integral actiofiis given by

faces in the problem and can be calculated independently in

where the integrations over three space, denoteddby
=drdz, are over the X,y)=r plane of area and over the
coordinatez. The last terms are th@onstant uniform sur-

this approximatiori9]. e(z ag\? e(z
pp 9] 3[¢,z]=ﬂ()f 24 dr+'8()Jdr(Vr¢)2
2 N4 2 A
IIl. HAMILTONIAN FIELD THEORETIC FORMALISM
For simplicity in what follows we consider a film system —2u(2) JAdf cogep¢)—ipal(z)

that is to say an inner region having two interfaces separating

it from an outer region. The surface of the film has atea

the (x,y)=r plane, the directiore is perpendicular to the +5(Z—L)]f dré. C)
film surface. For a system consisting of a film of thickness A

the film is in the regiorze [O,L ] and the exterior of the film  thg fynctional Schidinger Hamiltonian for the path integral
is in [—T',0] (the left exterioy and[L,T—L] (right exte- g tside the film is given by

rior). The total length of the physical system in théirec-

tion T+ T' is taken to be constant and we consider the limit 52 Beo
HE: f

" T 2B g2 2

of TandT’ as large. In the simplest case, which we study
here, the electrolyte is monovalent and the fugacity of cat-
ions and anions is the same and denoteglwithin the film
region and is zero outside. This can be encoded in a spatiall
varying fugacityu(x) = u(r,z) = u(z), with w(z)=pu for z 2
€[0L] and u(2)=0 for z¢[O,L]. The dielectric constant :f drl = 1 S +&(V $)2—2u codeBa) |.
within the film is denoted by and the external dielectric ' Ja 2Be sp(r)2 2T

constant is denoted by,. For a soap film, for examples (11

(Vr(b)zl- (10

VSide the film the Hamiltonian is
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The terms containing the surface charge and other more gen-

eral surface interactions may be included as source terms. HEZZI‘? +VE, (19
We note here that in the case of the Coulomb gas the field 0

¢ is interpreted as the position of a single particle and the

guantum mechanical formalism then leads to an exact solu- HF:2—+VF, (20
tion [10]. In this formulation we postulate that Be
2 =Tr exp(— THE) O exg — LHp) Oexp(— (T’ —L)Hg) where the functional potentials of the Hamiltonians are given
(12 by
where Tr denotes the trace over a complete set of states. The vV :@f dr(V.¢)2 (21)
source termO for a constant surface charge is clearly given E" 2 Ja e
by

. VFZ&f dr(Vr¢)2—2Mf dr cogeBo(r)). (22
(’)=exr<lﬁofAdr¢(r)>. (13 2 Ja A

_ _ We note that these functional potentials are pure functionals
The reason we say that E¢L2) is postulated, is that the and involve no functional derivative operators, thus they

boundary conditions for the above path integral are notommute with other functionals, notabty. The Eq.(15) is
straightforward to determine. We shall see later that the,ow written as

above choice assures the electroneutrality of the film since in

the limit T,T'— it only involves the ground-state wave =

functional | ¥,) of the HamiltonianHg . In general, instead 0= (Wolexp—THe)O exp(— LHe) (e, O]

of taking the trace, we could specify any linear combination

of wave functionals oHg as the initial(and fina) state for —O(Hg—Hg))exp(—(T' —L)Hg)|¥y). (23

the field ¢, however, as long as it has a nonzero component
of the wave functiof¥,), in the limit whereT andT’ are  Using the result
large the result will be the same. So, in the limit of laffe

2 _
and T’ the grand partition function may thus be written as [Py O1=2BaOP 4+ B0, (24
E=(¥ylexp— THg)O exp( —LHR)O we obtain
X exp(— (T'—L)Hg)|Po). 14 = o
HE TR (49 I:—A—B26 E—;<\PO exp — THe) Oexp — LHg)

In this formulation, the derivative with respect ltois taken

easily and unambiguously, we find that o
X

fAdr P¢(r)) exp(— (T’ —L)Hp)

:

—
=
—

= —(‘If0|eX[X—THE)(9 eX[Z(—LH;:)H,:(’)

X exp(—(T'—L)Hg)|¥o) +{(Wolexp — THg) O xexp(—(T'—=L)Hg)|¥o). (25
X exp(—LHg) OHegexp(—(T' =L)He)[Wo). (15  The final result for the pressure is thus
We now define the momentum operator for the figlet the Ba? 1 1o
pointr by BP=———+3((He— He)ls+)— A ;< fAdrPd)(r) st
(26)
Pon=—I——. 16
o0 o(r) 19 where the above notation indicates the normalized expecta-
) ) ] tion values of the operators shown, evaluated at the right-
This leads to the commutation relation most outer surface of the film*, i.e, atz=L"*. The third
e , term above can be shown to be zero in the case of systems
[Py, p(r)]=—idr=r"). (17 which are globally electroneutral; we will demonstrate this
S . ) more technical point later. We note the relation
The kinetic operatoK is then defined by
2
€p Bé €o
5 He=—H —Jdr 2u coge )——(1— )(v )2}.
K:jdrpfb(r):_fdr . (18) Fm e B )4 K B¢ 2 €2 r ¢
A A O(r) (27)

In this notation the exterior and interior Hamiltonians read Also it is straightforward to see that
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(nexp(zieBa(r)|)=(p*(r,2)) (28) . Bo? B
’ BP=(p"|s+p I =5~ Sle=el((V:¢)%l9)
is the mean value of the cation/anion density at the point
(r,z). Putting these results together we obtain Beg 1 €\ /[dd\? 35
) ) 2 WG] L) 39
BP=(p" s+ oI~ ﬁe(l 6°)<<V¢>2|> S
PIsTP ST 26 2 e s In the mean-field theory, when the fieltlis replaced by

1 € its mean field electrostatic fieleti ., the electroneutrality
+ _( 1— —)<HE|5+>, (29 of the system implies thatys./9z=0 outside the film and
A € the homogeneous nature of the mean-field solution in the
plane of the film yieldsV,#.=0. Thus the third and fourth
terms of Eq.(35) are zero and hence the contact value theo-
rem as classically stated is always verified at the mean-field
. . level. If we expand about the mean field solution, we see that
exterior of the surface as the terms are pure functionals of th e correction term due to the variation of the dielectric con-
field ¢ _and commute wittO as itis, itself, a pure functional stants comes from fluctuations about the mean-field solution.
oithe f'eld‘f' The last term is evaluated at the outer surfacerpe aye of this term can be calculated in the case of weak
s* (atz=L"). We thus obtain electrolyte strength in the Debye-Ekel approximation
5 2 [9,6,11. '
BP:(P+|S+P7|S>—'B—U— E(l— %)((Vﬂﬁ)zk) We now return to thg question of the global electroneu-
2¢ 2 € trality of the system. Using the correspondence between the

field ¢ and ¢ we have

) [ dp(r,Z)
(D) i 2202 @

where all but the last term are evaluated on the surfaee
=L) at any given poin{by homogeneity in the plang).
Here there is no ambiguity with regards to the interior or

1- 3) , (30)

+_
A €

whereEj, is the energy of the ground-state wave functional

|Wo). In the case where,= €, Eq. (30) immediately yieldS |t the film is electroneutral then, by symmetry about the
the classic contact value theorg8J as the third and fourth  fjiys midplane, the integral of the electric field over every

terms are identica!ly Z€ro. . . plane perpendicular to thedirection outside the film must
While the functional terms appearing in the expectation gnish and thus

values of the Hamiltonians are easy to interpret in terms of
observables, the kinetic terkrequires more work. The key < f ap(r)
dr
A

result here is
0z

> =0, (37

Be(2)[ d(r,2)\?
=\ . ()  for z>L (and also forz<0). Using the Heisenberg formal-

1 2
Gez) 0|2 9z
2Be(2) ism we find

This can be seen in the Heisenberg formalism which gives

. ap(n)| \

I(r,z)\? , _'<fAdf 0z ‘Z>—'<fAdr[HE,¢(r)] >

= ) =([H,¢(N1%). (32) :

1
We therefore can see that for a pominside the film B fo_ﬁ< fAdrP(r) ' (38)
2
(HF|Z>=<Jdr —% (9(!)((7;,2)) +%(Vr¢)2 and using the fact that
A
exp(— (T’ —L)Hg)| W) =exp(—(T' L) Eq)|¥o),

—2p COS(eﬁqb)} > (33

we may write
and outside the film

Beo[dd(r.2)\? B
<HE|Z>:<fAd|{_%( 9z )""%(Vrd’)z}z

> fAdrP¢(r)qu_(T,_L)HE)|‘~P0>

(34) =exp(—(T’—L)HE)fAdrPd,(r)hIfo}. (40)

Using Eq.(34) in Eq. (29) we find the alternative expres-
sion The final step in the proof of our result is to show that
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charge operato®, thus explaining why various charge regu-
lated models obey the classic midplane formula at the mean-
field level[12,6].

Outside the film we consider the Fourier representation of The Hamiltonian formalism is also illuminating in the

the field

B(r) ! > b(p)expip-r). (42)

=— X
VA 5 o
On this basis the exterior Hamiltonian becomes
1 8 ﬁ op
H-= _ — — —
=2 |~ 2pe shmeap 2 PPHCR)]
(43

Thus outside the film, each Fourier modegbis the coordi-

nate of an independent harmonic oscillator and the ground-

state wave functional is given by

~ 1 ~ o~
<¢|‘I'o>°‘1_p[ eXF{—EMw(pW(D)(ﬁ(—D) , (44
whereM = B¢, and w(p) =|p|. We now note that
fAdrP¢(r) I\/—m (45)

However from Eq(44) | W) is clearly independent ap(0)
and so the desired result E@1) follows directly.

Using the fact that the HamiltoniaHr commutes with
itself we may also rewrite Eq15) as

=4 1

1
Xex;{ - ELHF)O exp(—(T'—=L)Hg)| W)
+(Wo|exp(— THE) O exp—LHp) OHE
Xexp(—(T'— L)HE)l\I’O>. (46)

Applying the results derived above and using Bd) lead to

(9 2
5P=(o oo =5 (T 1o+ 5| 2] >
(47)

)

14
B g - Bl 52

case of a bulk calculation. Here the grand partition function
is given by

Eg=Tr exp(—LHg) (48)
which gives the pressure bulk pressure as
1
BPg=—1(He) (49)

where the expectation above is taken at any value bfow
using the relation Eq.33) and the homogeneity in the trans-
verse planeA we find

J 2
BPe=2p— %<(Vr¢>2>+%< (a—f) > (50)

wherep is the bulk electrolyte density. Using the isotropy of
the bulk system we finally obtain

ﬂPB=2p—%<(V¢>>Z>, (51)

where the gradient above is the full three-dimensional gradi-
ent. The first term above can be interpreted as an osmotic
term and the second term has its origin in the Maxwell stress
tensor for the electrostatic fie[d 3].

In d dimensions, using exactly the same decomposition in
terms of a temporal coordinateandd—1 dimensional hy-
persurface, the above expression becomes

Be )
BPe=2p— 55 (d-2)((V$)?). (52

Note that the above expression recovgld] the physical
pressure for a two-dimensional neutral Coulomb gas which
is given by the simple formula

e2

Pp: 2pkBT( 1- m) (53)
where the Sine-Gordon pressure has been corrected by the
two-dimensional self-energy term of E@l). This result can
be simply understood from the logarithmic nature of the
Coulomb potential in two dimensions and is valid in the
region of the thermodynamic stability of a purely Coulomb
system in two dimensiond 4.

The expression Ed51) may also be used to calculate the

wherem in the above indicates the value taken at the mid-physical bulk pressure of a three-dimensional Coulomb gas
plane of the filmz=L/2. At the mean-field level for an elec- Within the Debye-Huakel approximation. One finds that
troneutral film the last term again vanishes and, in addition, N 4

by symmetry the mean-field solutiak, obeysdy./9z=0 at

z=L/2. Hence if we neglect the corrections to mean field in

1
APe=2p~ 127740 e (4

the second two terms, the so-called midplane formula for the
mean-field approximatiofil,2] is immediately recovered. It whereA is again an ultraviolet cutoff anch= J2pe?Bleis

is also worth noting that Eq47) is valid for any surface

the Debye mass. This gives for large

061106-5



D. S. DEAN AND R. R. HORGAN PHYSICAL REVIEW EB8, 061106 (2003

A3

= — 2 3
BPs=2p 1572 (3 mA+m2

Iil. CONCLUSION
) (59

We have shown in the case of planar geometries that the
sine-Gordon type field theory for Coulomb systems can be
which is clearly divergent. However the physical pressureexpressed in terms of a+21 path integral for a fieldp on

due to the iond, is given by the 2D surface parallel to the film surface. The expression
has the form of ar matrix and the choice of the ground-
BP,=BPg— BPg(0)— BPs, (56)  state wave functional for the ingoing and outgoing states of

the field ¢ imposes the global electroneutrality of the sys-
whereBPg(0) is the pressure due to an electrostatic field intem. In the case of constant dielectric constant throughout
the absence of ions arR is a contribution coming from the the system, the classic contact value theorem is recovered. In
self-interaction of the ions with themselves. To see the origirf"€ presence of dielectric variations, we see how the contact

of P< we note that value theorem is corrected by fluctuations about the mean-
s field solution. A corresponding version of the midplane for-
p g p
eV=—ieVy=iE (57) mula is also derived, which is also shown to be generically

valid at the mean-field level. We again see that the correc-
tions come from fluctuations about the mean-field solution.
In both cases these fluctuations about the mean-field solution
are known to be of Casimir type and can be calculated within
various approximations. The results show clearly that the

whereE is the electric field. Clearlfe=X;E;, whereE; is
the field due to the single particie The term inE? which
contributes to the interaction between particles is tEds

—3E7. This means that pressure of the system has two distinct, though inter-related,
contributions: an osmotic pressure term plus a term coming

P 1 S 2= N 2 58 from static thermal fluctuations of the fieldl. The present
ST e\ 4 _§< ) (58 Hamiltonian technique has the advantage of giving an unam-

biguous way of taking the derivative of the grand partition
Hence if 4 is the electrostatic potential generated by afl;nctl?n W'trrz respect tg éhel film trg'cknei;sln'the presr?nce |
sinale particle at the position of interest then of surface charges and dielectric discontinuities. In the usua
glep P field theoretic formulation the taking of this derivative and

2peB €28 (A 1 the interpretation of the resulting terms as thermodynamic
BPs= p f dr(V ¢')2:p > f dk= >M2A. averages is far from obvious. In this Hamiltonian approach,
6 67%€)o 127 the passage between the contact value result and midplane

(59 result is also straightforward. We have also shown how the
_ ) ) Hamiltonian approach provides an alternative method for
Putting all this together gives us the well known Debye Prestepresenting the pressure of bulk systems, giving results in
sure formula accordance with those obtained via other methods,
As far as future work is concerned, using the results ob-
(60) tained here, similar results can be obtained for more compli-
cated layer geometrieg@dditional dielectric layers for in-
stance and also for more complicated surface charges, for
We state here that the general result E5§) may also be instance modulated surface charges and surface charges built
derived by putting the field theory on a lattice and changingup from thermodynamic or chemical surface charging

m3
,6’Pp=2p— E

the volume of the system by varying the lattice di2&]. mechanismsi.e., charge regulated modg[$,12].
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