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Field theoretic derivation of the contact value theorem in planar geometries and its modification
by the Casimir effect
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The contact value theorem for Coulomb gases in planar or filmlike geometries is derived using a Hamil-
tonian field theoretic representation of the system. The case where the film is enclosed by a material of
different dielectric constant to that of the film is shown to contain an additional Casimir-like term which is
generated by fluctuations of the electric potential about its mean-field value.
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I. INTRODUCTION

Coulomb gases arise in a huge variety of physical c
texts from plasmas to soft condensed matter systems@1,2#.
Ideal Coulomb gases, where only pointlike charges are c
sidered, present a number of useful sum rules@3,4#. These
sum rules are exact identities between certain statistical
chanical observables. Sum rules are useful for checking
validity of approximation schemes, which must almost
ways be applied in the case of strongly interacting syste
They also provide potentially useful experimental and n
merical methods of indirectly measuring local observable
terms of macroscopically measurable quantities such as
pressure and vice versa. Finally sum rules may also be u
to verify the accuracy of numerical simulations whe
thanks to the sum rule, the same quantity can be measur
two independent ways.

An example of such a sum rule is the contact value th
rem which relates the surface charge and density at the
face of the system to the system’s pressure@3,4#. In this
paper we use a field theoretic approach to show how
basic contact value theorem can be derived in the cas
layered geometries, such as soap films, and show how
contact value theorem is modified when the dielectric c
stante within the film is different from that outside the film
e0. The film geometry is of particular importance as it co
responds to the experimental set up used to study soap
@5#. We exploit the planar geometry to develop a Ham
tonian formulation of the Sine-Gordon field theory whic
arises for Coulomb gases@6#. In this formulation the perpen
dicular direction, denoted here byz, acts as a temporal coo
dinate in which a fieldf(r ) on the plane perpendicular toz,
and whose coordinates are denoted by the vectorr , propa-
gates. The case where global electroneutrality holds
treated within this formulation. The condition of electrone
trality can be related to the choice of ground-state wave fu
tional for the dynamical fieldf(r ).

In the canonical ensemble, the partition function for
system of fixed particle number on a three-dimenaio
spaceV is given by@6#
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Z5TrE d@f#expS 2
b

2EV
dxe~x!~“f~x!!2

1 ibE
V
dxre~x!f~x! D , ~1!

where Tr denotes the classical trace over the particle p
tions 1/N!*V) i 51

N dxi and d@f# denotes the functional inte
gral over the fieldf. The fieldf is the Wick rotated elec-
trostatic fieldc and is thus related toc via c52 if. The
termre(x)5( i 51

N qid(x2xi)1rq(x) is the charge density o
the system. The first term is the dynamical charge den
which can vary in the system,xi being the position of par-
ticle i, andqi its charge. The second termrq is a quenched
background charge which is not dynamical and represe
for example, a fixed surface charge. The integration volu
in the actionV is all space. We note that the above treatm
of a two component Coulomb gas needs to be modifi
where the basic physical description of point charges in
acting via a Coulomb potential is thermodynamically u
stable. For instance the system can become unstable
have a tendency to collapse at low temperatures if some s
range, for example hard core, repulsion is not included. T
Sine-Gordon theory can always be regularized by introd
ing a high momentum or short distance cutoff in the Four
modes of the fieldf. We note that the above formulatio
contains self interactions between the particles,i.e., the terms
qiqjv(r i2r j)/2 for i 5 j where v is the effective pairwise
interaction are included. The interaction of a particle with
image charges is part of this contribution and should be
cluded, but the self-energy in the bulk medium should n
contribute to the physical pressure and so must be subtra
For a monovalent system in dimensiond, if one removes the
bulk self-energy term, the Sine-Gordon free energy is c
rected by a term

DF52N
e2v~0!

2
52

Ne2

2e

Sd

~2p!dE
0

L

dkkd23, ~2!

whereN is the number of particles,Sd denotes the surface o
the unit sphere ind dimensions andL is an ultraviolet or
short distance cutoff. Note that ford.2 DF is a regular
function ofL and so can be absorbed into the fugacity. Ho
©2003 The American Physical Society06-1
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ever, ford52 the integral in Eq.~2! has an infrared diver-
gence atk50, which must be cut off at the inverse syste
size 1/L giving

DF52
Ne2

4pe
@ ln~L!2 ln~1/L !#. ~3!

Thus, in two dimensions there is a correction to the si
Gordon pressure of

DP52
re2

4pe
, ~4!

where 2r5N/L2 is twice the density of electrolyte.
Normally the particlesi are restricted to a subvolumeV,

for instance in the interior of a soap film for electrolyte s
lutions. In the case wheree is constant, the functional inte
gral over f is easily done and we recover a system ofN
particles interacting via the Coulomb potential. For a vary
dielectric constante the resulting interaction depends on t
spatial variation ofe and the resulting integration gives ris
to a more complicated interaction which can be interprete
terms of image charges. The partition functionZ in Eq. ~1!
thus contains a term which is due to the pairwise int
particle interaction, plus a functional determinant comi
from the integration overf. Both of these terms are prese
in the physics of the problem and should be taken into
count. The form of Eq.~1! comes directly from a static ap
proximation to quantum electrodynamics~QED! where the
nonzero frequency, Matsubara frequencies, and electric
rents~and thus the magnetic field! are neglected in the actio
of QED @6–8#. This approximation is justified when th
charge distribution is very weakly coupled to nonzero M
subara frequencies@9#, that is to say the response time of th
charge to the nonzero frequencies is large. The nonzero M
subara frequencies, when decoupled from the charge d
bution, yield a van der Waals interaction between the s
faces in the problem and can be calculated independent
this approximation@9#.

II. HAMILTONIAN FIELD THEORETIC FORMALISM

For simplicity in what follows we consider a film syste
that is to say an inner region having two interfaces separa
it from an outer region. The surface of the film has areaA in
the (x,y)5r plane, the directionz is perpendicular to the
film surface. For a system consisting of a film of thicknessL,
the film is in the regionzP@0,L# and the exterior of the film
is in @2T8,0# ~the left exterior! and @L,T2L# ~right exte-
rior!. The total length of the physical system in thez direc-
tion T1T8 is taken to be constant and we consider the lim
of T and T8 as large. In the simplest case, which we stu
here, the electrolyte is monovalent and the fugacity of c
ions and anions is the same and denoted bym within the film
region and is zero outside. This can be encoded in a spat
varying fugacitym(x)5m(r ,z)5m(z), with m(z)5m for z
P@0,L# and m(z)50 for z¹@0,L#. The dielectric constan
within the film is denoted bye and the external dielectric
constant is denoted bye0. For a soap film, for example,e0
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could be the dielectric constant of air ande the dielectric
constant of water. We may also consider systems where
regionszP@2d,0# and zP@L,L1d# have a dielectric con-
stant determined by the dielectric constant of a surfactant
its concentration at the surface.

In the grand canonical ensemble, the grand partition fu
tion is written as

J5E d@f#exp~2S@f,L# !. ~5!

The film the pressure is therefore given by

bP5
1

A

] ln~J!

]L
. ~6!

In the case considered here,S is the action of a generalize
Sine-Gordon field theory@6#

S@f,L#5
b

2EV
dxe~z!~“f!222E

V
dxm~z!cos~ebf~x!!

2 ibE
z50

drsf~x!1 ibE
z5L

drsf~x!, ~7!

where the integrations over three space, denoted bydx
5drdz, are over the (x,y)5r plane of areaA and over the
coordinatez. The last terms are the~constant uniform! sur-
face charge contributions from the transverse planes of
A at z50 andz5L.

We now rewrite the action using the 211 decomposition
in terms of the fieldf(r ), which evolves with a tempora
coordinatez

J5E D@f#expS 2E dzS@f,z# D , ~8!

where the path integral actionS is given by

S@f,z#5
be~z!

2 E
A
S ]f

]z D 2

dr1
be~z!

2 E
A
dr ~“ rf!2

22m~z!E
A
dr cos~ebf!2 ibs@d~z!

1d~z2L !#E
A
drf. ~9!

The functional Schro¨dinger Hamiltonian for the path integra
outside the film is given by

HE5E
A
drF2

1

2be0

d2

df~r !2
1

be0

2
~“ rf!2G . ~10!

Inside the film the Hamiltonian is

HF5E
A
drF2

1

2be

d2

df~r !2
1

be

2
~“ rf!222m cos~ebf!G .

~11!
6-2
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The terms containing the surface charge and other more
eral surface interactions may be included as source te
We note here that in the case of the 1d Coulomb gas the field
f is interpreted as the position of a single particle and
quantum mechanical formalism then leads to an exact s
tion @10#. In this formulation we postulate that

J5Tr exp~2THE!O exp~2LHF!Oexp„2~T82L !HE…,
~12!

where Tr denotes the trace over a complete set of states.
source termO for a constant surface charge is clearly giv
by

O5expS ibsE
A
drf~r ! D . ~13!

The reason we say that Eq.~12! is postulated, is that the
boundary conditions for the above path integral are
straightforward to determine. We shall see later that
above choice assures the electroneutrality of the film sinc
the limit T,T8→` it only involves the ground-state wav
functional uC0& of the HamiltonianHE . In general, instead
of taking the trace, we could specify any linear combinat
of wave functionals ofHE as the initial~and final! state for
the fieldf, however, as long as it has a nonzero compon
of the wave functionuC0&, in the limit whereT andT8 are
large the result will be the same. So, in the limit of largeT
andT8 the grand partition function may thus be written a

J5^C0uexp~2THE!O exp~2LHF!O
3exp„2~T82L !HE…uC0&. ~14!

In this formulation, the derivative with respect toL is taken
easily and unambiguously, we find that

]J

]L
52^C0uexp~2THE!O exp~2LHF!HFO

3exp„2~T82L !HE…uC0&1^C0uexp~2THE!O
3exp~2LHF!OHEexp„2~T82L !HE…uC0&. ~15!

We now define the momentum operator for the fieldf at the
point r by

Pf(r )52 i
d

df~r !
. ~16!

This leads to the commutation relation

@Pf(r ) ,f~r 8!#52 id~r2r 8!. ~17!

The kinetic operatorK is then defined by

K5E
A
drPf(r )

2 52E
A
dr

d2

df~r !2
. ~18!

In this notation the exterior and interior Hamiltonians rea
06110
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HE5
K

2be0
1VE , ~19!

HF5
K

2be
1VF , ~20!

where the functional potentials of the Hamiltonians are giv
by

VE5
be0

2 E
A
dr ~¹rf!2, ~21!

VF5
be

2 E
A
dr ~¹rf!222mE

A
dr cos„ebf~r !…. ~22!

We note that these functional potentials are pure function
and involve no functional derivative operators, thus th
commute with other functionals, notablyO. The Eq.~15! is
now written as

]J

]L
52^C0uexp~2THE!O exp~2LHF!„@HF ,O#

2O~HE2HF!…exp„2~T82L !HE…uC0&. ~23!

Using the result

@Pf(r )
2 ,O#52bsOPf(r )1b2s2O, ~24!

we obtain

]J

]L
52A

bs2

2e
J2

s

e K C0Uexp~2THE!Oexp~2LHF!

3OS E
A
drPf(r )D exp„2~T82L !HE…UC0L

1^C0uexp~2THE!O exp~2LHF!O~HE2HF!

3exp„2~T82L !HE…uC0&. ~25!

The final result for the pressure is thus

bP52
bs2

2e
1

1

A
^~HE2HF!us1&2

1

A

s

e K E
A
drPf(r )Us1L ,

~26!

where the above notation indicates the normalized expe
tion values of the operators shown, evaluated at the rig
most outer surface of the films1, i.e., at z5L1. The third
term above can be shown to be zero in the case of syst
which are globally electroneutral; we will demonstrate th
more technical point later. We note the relation

HF5
e0

e
HE2E

A
dr F2m cos~ebf!2

be

2 S 12
e0

2

e2D ~¹rf!2G .
~27!

Also it is straightforward to see that
6-3
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^mexp~6 iebf~r !uz&5^r6~r ,z!& ~28!

is the mean value of the cation/anion density at the po
(r ,z). Putting these results together we obtain

bP5^r1us1r2us&2
bs2

2e
2

be

2 S 12
e0

2

e2D ^~¹rf!2us&

1
1

AS 12
e0

e D ^HEus1&, ~29!

where all but the last term are evaluated on the surfaces (z
5L) at any given point~by homogeneity in the planeA).
Here there is no ambiguity with regards to the interior
exterior of the surface as the terms are pure functionals of
field f and commute withO as it is, itself, a pure functiona
of the fieldf. The last term is evaluated at the outer surfa
s1 ~at z5L1). We thus obtain

bP5^r1us1r2us&2
bs2

2e
2

be

2 S 12
e0

2

e2D ^~¹rf!2us&

1
E0

A S 12
e0

e D , ~30!

whereE0 is the energy of the ground-state wave function
uC0&. In the case wheree05e, Eq. ~30! immediately yields
the classic contact value theorem@3# as the third and fourth
terms are identically zero.

While the functional terms appearing in the expectat
values of the Hamiltonians are easy to interpret in terms
observables, the kinetic termK requires more work. The key
result here is

K 1

2be~z!
Pf(r )

2 UzL 52 K be~z!

2 S ]f~r ,z!

]z D 2L . ~31!

This can be seen in the Heisenberg formalism which giv

K S ]f~r ,z!

]z D 2L 5^@H,f~r !#2uz&. ~32!

We therefore can see that for a pointz inside the film

^HFuz&5K E
A
dr F2

be

2 S ]f(r ,z)

]z D 2

1
be

2
(¹rf)2

22m cos(ebf)GU
z
L , ~33!

and outside the film

^HEuz&5K E
A
dr F2

be0

2 S ]f~r ,z!

]z D 2

1
be0

2
~¹rf!2GU

z
L .

~34!

Using Eq.~34! in Eq. ~29! we find the alternative expres
sion
06110
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bP5^r1us1r2us&2
bs2

2e
2

b

2
~e2e0!^~“ rf!2us&

2
be0

2 S 12
e0

e D K S ]f

]z D 2U
s1
L . ~35!

In the mean-field theory, when the fieldf is replaced by
its mean field electrostatic field2 icc , the electroneutrality
of the system implies that]cc /]z50 outside the film and
the homogeneous nature of the mean-field solution in
plane of the film yields“ rcc50. Thus the third and fourth
terms of Eq.~35! are zero and hence the contact value th
rem as classically stated is always verified at the mean-fi
level. If we expand about the mean field solution, we see
the correction term due to the variation of the dielectric co
stants comes from fluctuations about the mean-field solut
The value of this term can be calculated in the case of w
electrolyte strength in the Debye-Hu¨ckel approximation
@9,6,11#.

We now return to the question of the global electrone
trality of the system. Using the correspondence between
field f andc we have

K ]c~r ,z!

]z L 52 i K ]f~r ,z!

]z L . ~36!

If the film is electroneutral then, by symmetry about t
film’s midplane, the integral of the electric field over eve
plane perpendicular to thez direction outside the film mus
vanish, and thus

K E
A
dr

]c~r !

]z U
z
L 50, ~37!

for z.L ~and also forz,0). Using the Heisenberg formal
ism we find

2 i K EA
dr

]f~r !

]z U
z
L 5 i K EA

dr @HE ,f~r !#U
z
L

5
1

e0bK EA
drP~r !U

z

L , ~38!

and using the fact that

exp„2~T82L !HE…uC0&5exp„2~T82L !E0…uC0&,
~39!

we may write

E
A
drPf(r )exp„2~T82L !HE…uC0&

5exp„2~T82L !HE…E
A
drPf(r )uC0&. ~40!

The final step in the proof of our result is to show that
6-4



o

n

id
-
on

in
th
t

u-
an-

e
ion

-

of

di-
otic
ess

in

ich

the

he
e
b

e
gas

FIELD THEORETIC DERIVATION OF THE CONTACT . . . PHYSICAL REVIEW E 68, 061106 ~2003!
E
A
drPf(r )uC0&50. ~41!

Outside the film we consider the Fourier representation
the field

f~r !5
1

AA
(

p
f̃~p!exp~ ip•r !. ~42!

On this basis the exterior Hamiltonian becomes

HE5(
p

F2
1

2be0

d2

df̃~p!df̃~2p!
1

be0p2

2
f̃~p!f̃~2p!G .

~43!

Thus outside the film, each Fourier mode off is the coordi-
nate of an independent harmonic oscillator and the grou
state wave functional is given by

^f̃uC0&})
p

expS 2
1

2
Mv~p!f̃~p!f̃~2p! D , ~44!

whereM5be0 andv(p)5upu. We now note that

E
A
drPf(r )52 iAA

d

df̃~0!
. ~45!

However from Eq.~44! uC0& is clearly independent off̃(0)
and so the desired result Eq.~41! follows directly.

Using the fact that the HamiltonianHF commutes with
itself we may also rewrite Eq.~15! as

]J

]L
52^C0uexp~2THE!O expS 2

1

2
LHFDHF

3expS 2
1

2
LHFDO exp„2~T82L !HE…uC0&

1^C0uexp~2THE!O exp~2LHF!OHE

3exp„2~T82L !HE…uC0&. ~46!

Applying the results derived above and using Eq.~11! lead to

bP5^r1um1r2um&2
be

2
^~¹rf!2um&1

be

2 K S ]f

]z D 2U
m
L

1
be0

2
^~¹rf!2us&2

be0

2 K S ]f

]z D 2U
s1
L , ~47!

wherem in the above indicates the value taken at the m
plane of the filmz5L/2. At the mean-field level for an elec
troneutral film the last term again vanishes and, in additi
by symmetry the mean-field solutioncc obeys]cc /]z50 at
z5L/2. Hence if we neglect the corrections to mean field
the second two terms, the so-called midplane formula for
mean-field approximation@1,2# is immediately recovered. I
is also worth noting that Eq.~47! is valid for any surface
06110
f
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charge operatorO, thus explaining why various charge reg
lated models obey the classic midplane formula at the me
field level @12,6#.

The Hamiltonian formalism is also illuminating in th
case of a bulk calculation. Here the grand partition funct
is given by

JB5Tr exp~2LHF! ~48!

which gives the pressure bulk pressure as

bPB52
1

A
^HF& ~49!

where the expectation above is taken at any value ofz. Now
using the relation Eq.~33! and the homogeneity in the trans
verse planeA we find

bPB52r2
be

2
^~¹rf!2&1

be

2 K S ]f

]z D 2L , ~50!

wherer is the bulk electrolyte density. Using the isotropy
the bulk system we finally obtain

bPB52r2
be

6
^~“f!2&, ~51!

where the gradient above is the full three-dimensional gra
ent. The first term above can be interpreted as an osm
term and the second term has its origin in the Maxwell str
tensor for the electrostatic field@13#.

In d dimensions, using exactly the same decomposition
terms of a temporal coordinatez andd21 dimensional hy-
persurface, the above expression becomes

bPB52r2
be

2d
~d22!^~¹f!2&. ~52!

Note that the above expression recovers@14# the physical
pressure for a two-dimensional neutral Coulomb gas wh
is given by the simple formula

Pp52rkBTS 12
e2

8pekBTD ~53!

where the Sine-Gordon pressure has been corrected by
two-dimensional self-energy term of Eq.~4!. This result can
be simply understood from the logarithmic nature of t
Coulomb potential in two dimensions and is valid in th
region of the thermodynamic stability of a purely Coulom
system in two dimensions@14#.

The expression Eq.~51! may also be used to calculate th
physical bulk pressure of a three-dimensional Coulomb
within the Debye-Hu¨ckel approximation. One finds that

bPB52r2
1

12p2E
0

L

dk
k4

k21m2 , ~54!

whereL is again an ultraviolet cutoff andm5A2re2b/e is
the Debye mass. This gives for largeL
6-5
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bPB52r2
1

12p2 S L3

3
2m2L1m3

p

2 D ~55!

which is clearly divergent. However the physical press
due to the ionsPp is given by

bPp5bPB2bPB~0!2bPS , ~56!

wherebPB(0) is the pressure due to an electrostatic field
the absence of ions andPS is a contribution coming from the
self-interaction of the ions with themselves. To see the ori
of PS we note that

e“f52 i e“c5 iE, ~57!

whereE is the electric field. ClearlyE5( iEi , whereEi is
the field due to the single particlei. The term inE2 which
contributes to the interaction between particles is thusE2

2( iEi
2 . This means that

PS5
1

6e K (
i

Ei
2L 5

N

6e
^Ei

2&. ~58!

Hence if c8 is the electrostatic potential generated by
single particle at the position of interest then

bPS5
2reb

6 E dr ~¹c8!25
re2b

6p2eE0

L

dk5
1

12p2 m2L.

~59!

Putting all this together gives us the well known Debye pr
sure formula

bPp52r2
m3

24p
. ~60!

We state here that the general result Eq.~52! may also be
derived by putting the field theory on a lattice and chang
the volume of the system by varying the lattice size@15#.
r
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III. CONCLUSION

We have shown in the case of planar geometries that
sine-Gordon type field theory for Coulomb systems can
expressed in terms of a 211 path integral for a fieldf on
the 2D surface parallel to the film surface. The express
has the form of anS matrix and the choice of the ground
state wave functional for the ingoing and outgoing states
the field f imposes the global electroneutrality of the sy
tem. In the case of constant dielectric constant through
the system, the classic contact value theorem is recovere
the presence of dielectric variations, we see how the con
value theorem is corrected by fluctuations about the me
field solution. A corresponding version of the midplane fo
mula is also derived, which is also shown to be generica
valid at the mean-field level. We again see that the corr
tions come from fluctuations about the mean-field soluti
In both cases these fluctuations about the mean-field solu
are known to be of Casimir type and can be calculated wit
various approximations. The results show clearly that
pressure of the system has two distinct, though inter-rela
contributions: an osmotic pressure term plus a term com
from static thermal fluctuations of the fieldf. The present
Hamiltonian technique has the advantage of giving an un
biguous way of taking the derivative of the grand partiti
function with respect to the film thicknessL in the presence
of surface charges and dielectric discontinuities. In the us
field theoretic formulation the taking of this derivative an
the interpretation of the resulting terms as thermodyna
averages is far from obvious. In this Hamiltonian approa
the passage between the contact value result and midp
result is also straightforward. We have also shown how
Hamiltonian approach provides an alternative method
representing the pressure of bulk systems, giving result
accordance with those obtained via other methods,

As far as future work is concerned, using the results
tained here, similar results can be obtained for more com
cated layer geometries~additional dielectric layers for in-
stance! and also for more complicated surface charges,
instance modulated surface charges and surface charges
up from thermodynamic or chemical surface chargi
mechanisms~i.e., charge regulated models! @6,12#.
h
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